
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2002; 39:979–999 (DOI: 10.1002/�d.318)

Parallelization of a vorticity formulation for the analysis of
incompressible viscous �uid �ows

Mary J. Brown and Marc S. Ingber∗

Department of Mechanical Engineering; University of New Mexico; Albuquerque; NM 87131; U.S.A.

SUMMARY

A parallel computer implementation of a vorticity formulation for the analysis of incompressible viscous
�uid �ow problems is presented. The vorticity formulation involves a three-step process, two kinematic
steps followed by a kinetic step. The �rst kinematic step determines vortex sheet strengths along the
boundary of the domain from a Galerkin implementation of the generalized Helmholtz decomposition.
The vortex sheet strengths are related to the vorticity �ux boundary conditions. The second kinematic
step determines the interior velocity �eld from the regular form of the generalized Helmholtz decom-
position. The third kinetic step solves the vorticity equation using a Galerkin �nite element method
with boundary conditions determined in the �rst step and velocities determined in the second step.
The accuracy of the numerical algorithm is demonstrated through the driven-cavity problem and the
2-D cylinder in a free-stream problem, which represent both internal and external �ows. Each of the
three steps requires a unique parallelization e�ort, which are evaluated in terms of parallel e�ciency.
Copyright ? 2002 John Wiley & Sons, Ltd.

KEY WORDS: vorticity method; parallel �nite element method; parallel boundary element method;
generalized Helmholtz decomposition

1. INTRODUCTION

The use of vorticity formulations for the analysis of incompressible viscous �uid �ows
has several advantages over primitive-variable formulations. Some of these advantages in-
clude a reduction of the number of equations to be solved through the elimination of the
pressure variable, identical satisfaction of the compressibility constraint and the continu-
ity equation, and an implicitly higher-order approximation of the velocity components. The
main disadvantage of vorticity formulations is the fact that the boundary conditions are
typically given in terms of prescribed velocity rather than prescribed vorticity or vorticity
�ux.
Several approaches have been developed over the years to derive vorticity boundary con-

ditions from the prescribed velocity boundary conditions and the vorticity within the domain.

∗Correspondence to: M. S. Ingber, Department of Mechanical Engineering, University of New Mexico, Albuquerque,
NM 87131, U.S.A.

Received 9 November 2000
Copyright ? 2002 John Wiley & Sons, Ltd. Revised 15 December 2001

980 M. J. BROWN AND M. S. INGBER

Some of these approaches include streamfunction–vorticity methods [1–6], velocity–vorticity
Cauchy methods [7], vorticity–velocity Poisson equation methods [8], Biot–Savart methods
[9], and generalized Helmholtz decomposition methods [10–15].
The generalized Helmholtz decomposition (GHD) is a kinematic statement which relates

the velocity at a point within the domain to the domain vorticity and the imposed velocity
boundary conditions. Wu [13] uses the GHD to determine values of the boundary vorticity
which then yields Dirichlet boundary conditions for his solution of the vorticity equation. Wu
states that, for a two-dimensional problem, either component of the GHD can be used to
determine the boundary vorticity, since the tangential and normal components are equivalent.
Morino [14] discusses the use of the GHD to determine boundary conditions for viscous �uid
�ows. He states that the process of vorticity generation can be interpreted by satisfying the
normal boundary condition at discrete time steps followed by in�nitesimally small intervals
when di�usion of the vortex sheets occurs. El-Refaee [16] uses the GHD for the solution
of the interior velocity using the tangential component of the boundary velocity. He then
uses the vorticity transport equation and Green’s theorem to solve for the boundary vorticities
followed by a successive under-relaxation iterative scheme to solve for the interior vortici-
ties. In the current research, a Galerkin form of the GHD [17] is used to determine vortex
sheet strengths which are then related to the vorticity �ux at the boundary. The advantage of
the current approach is that the velocity boundary conditions are far better satis�ed using a
Galerkin implementation of the GHD compared to using the more traditional point collocation
methods.
A parallel computer implementation of a vorticity formulation to analyse incompressible

viscous �uid �ow is presented in this paper. The formulation is divided into three distinct
steps, two kinematic steps and one kinetic step. The �rst kinematic step is the determination
of Neumann boundary conditions for the vorticity equation using a Galerkin form of the
GHD. The second kinematic step is the determination of interior velocities using the regular
form of the GHD. The third kinetic step is the solution of the vorticity equation using a
Galerkin �nite element method (FEM). Each of the three steps of the algorithm requires
a di�erent approach for the parallelization e�ort. However, common to all three steps, a
distributed memory architecture and a single program, multiple data (SPMD) programming
paradigm using message passing interface (MPI) as the interprocessor communication protocol
is assumed.
The primary limiting factor in the serial code version of the algorithm is the size of the

arrays used to store the velocity integral arrays in step two. These large arrays bene�t greatly
from parallelization, both from the reduction in size of the array because of the distributed
memory architecture as well as the distribution of the work load in creating these arrays
and in performing the matrix–vector multiplication to determine the interior velocity �eld.
This step is parallelized �rst to take advantage of the huge memory savings of dividing
these large arrays among processors as well as the relative simplicity of the parallel algo-
rithm. Since the evaluation of the velocity integrals at each interior node is independent,
the integral evaluations can simply be distributed among processors and the results stored
on the same processor. This evaluation is done only once, outside of the time stepping
loop. Within the time loop, matrix–vector multiplications are performed on each proces-
sor to determine a portion of the interior velocity �eld. The only communication required
is a broadcast of the interior vorticity �eld and a gather of the nodal velocities into an
array.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:979–999

PARALLEL VORTICITY FORMULATION 981

The parallelization e�ort for the �rst and third steps requires a more involved strategy.
The Galerkin GHD used to determine the boundary vortex sheets for the �rst step is es-
sentially a boundary integral equation (BIE). Several approaches have been developed for
parallel BIEs [18–21]. The assembly phase of most BIE formulations consists of a triple-
nested do-loop. For Galerkin methods, the outer and middle loops are over boundary ele-
ments while the inner loop is over Gauss points. Distributing the outer loop elements over
processors is equivalent to common row-wrapping techniques. Distributing the middle loop
elements over processors is equivalent to column wrapping. Distributing the inner loop Gauss
points over processors results in a �ne grain parallelization which is not particularly well
suited to distributed memory computer architectures [22]. However, none of these strategies
is optimal when using a direct solver [23]. A direct solver is used in this research because, rel-
ative to the �nite element discretized equation set, the boundary element discretized equation
set is relatively small and results in a fully populated linear system allowing for e�cient
use of the direct solver. Further, the decomposition can be performed once, outside the
time loop, and hence, only forward and backward substitutions are required within the time
loop. The optimal strategy for the BIE using a direct solver uses a block-cyclic data distribu-
tion [24–26]. In this approach, portions of both the outer and intermediate loop
are distributed over processors resulting in rectangular submatrices being assigned to
processors.
Several parallel FEMs have also been developed over the past several years. Nodal as-

sembly [27] divides the nodes among the processors, but requires a certain amount of book-
keeping to provide the connectivity information. Element-by-element solution algorithms [28]
divide the elements among the processors, but the global matrix is never assembled. Matrix–
vector operations are performed on elemental matrices and the global vector result is ob-
tained by summing over all elements. These require some redundancy in that nodal data
may be needed on more than one processor. Total-summed-row or ‘fully summed equa-
tions’ approaches [29] sum the elemental coe�cient matrices at the beginning of the solve
rather than summing the vector product. For this particular problem, since the nodal data
for this problem are already required on each processor for the calculation of the interior
velocities, no bene�t would be gained by using the nodal assembly method. The total-
summed-row method is chosen in this research to reduce the memory required since a
sparse summed matrix is more memory e�cient than individual element matrices. This is
accomplished by assigning individual rows of the discretized �nite element equations among
processors. Each row of these equations is calculated independently of all other rows. In
the current implementation, the equations are solved using a generalized minimal resid-
ual (GMRES) iterative method. During the solution phase of the algorithm using the GM-
RES, the only communication that is required is the gathering of the residual
vectors.
Two benchmark problems are considered to show the accuracy of the present formula-

tion. The �rst benchmark is the driven-cavity problem and the second benchmark is the
cylinder in a free-stream problem. Results generated by the current parallel algorithm are
compared to accepted standards available in the literature. A complete analysis is also per-
formed to determine the e�ectiveness of the parallel strategies for each step of the numer-
ical algorithm in terms of scalability and memory savings as well as the algorithm as a
whole.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:979–999

982 M. J. BROWN AND M. S. INGBER

2. MATHEMATICAL FORMULATION

The vorticity form of the Navier–Stokes equations for an incompressible �ow in two dimen-
sions is given by

@�
@t
+ (u · ∇)�= �∇2� (1)

where u is the velocity �eld, �=∇× u is the vorticity �eld, t is time and � the kinematic �uid
viscosity. In the course of solving Equation (1), the velocity �eld, u, must be determined from
the vorticity �eld, �, and the creation of vorticity on the boundary must be determined from
the velocity boundary conditions. In the present formulation, determining both the interior
velocity �eld and the creation of vorticity on the boundary are accomplished in a uni�ed
manner using the GHD.
The GHD for an incompressible �uid in two dimensions is given by

�(x)u(x) =
∫
�

�(y)× r(x; y)
r2(x; y)

d�(y)+
∫
�

[u(y)× n(y)]× r(x; y)
r2(x; y)

d�(y)

−
∫
�

[u(y) · n(y)]r(x; y)
r2(x; y)

d�(y) (2)

where n is the unit normal vector on the boundary (pointing away from the �uid), � represents
the two-dimensional domain, � is the boundary of � and r is the distance between x and y.
The coe�cient � is a function of the location of the �eld point x. For �eld points outside the
domain, �=0; for �eld points in the interior the domain, �=2�; for �eld points on smooth
portions of the boundary, �=�; and for �eld points at corners, � can be related to a local
internal angle.
For �eld points x on the boundary, Equation (2) can be augmented to allow for a slip

velocity by including the vortex sheet of strength S as follows [30]:

�(x)[u(x)− S(x)× n(x)] =
∫
�

�(y)× r(x; y)
r2(x; y)

d�(y)

+
∫
�

[(u(y)− S(y)× n(y))× n(y)]× r(x; y)
r2(x; y)

d�(y)

−
∫
�

[(u(y)− S(y)× n(y)) ·n(y)]r(x; y)
r2(x; y)

d�(y) (3)

The solution of Equation (3) yields the vortex sheet strengths, S, representing the creation of
vorticity during a given time step.
The vorticity equation (Equation (1)) represents the kinetics of the vorticity formulation

while the modi�ed GHD (Equation (3)) represents the kinematics of the formulation. The
numerical formulation as described in the next section is divided into three steps. In the �rst
step, a Galerkin implementation of the modi�ed GHD is solved to determine the vortex sheet

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:979–999

PARALLEL VORTICITY FORMULATION 983

strengths. The vortex sheet strengths represent the vorticity creation during the previous time
step and, to �rst order in time, are related to the vorticity �ux by [31; 17]

@�
@n
=

S
��t

(4)

where �t is the discrete time step. In the second step, interior velocities are calculated using
the regular form of the modi�ed GHD. Thus, both the interior velocities and vortex sheet
strengths are calculated in a uni�ed manner using the GHD. In the third step, the vorticity
equation (Equation (1)) is solved using a FEM. However, after an explicit time step in the
vorticity equation, the modi�ed GHD is no longer satis�ed without taking into account newly
formed vorticity on the boundary. Kinematic compatibility is re-established by going back
to step 1 and solving for the newly formed vortex sheet strengths. This three step process
is interesting from an implementation point of view since each of the three steps requires a
signi�cantly di�erent strategy for parallelization. The parallelization strategies for each step is
discussed in Section 5.

3. NUMERICAL FORMULATION

Details of the numerical formulation have been given previously by Ingber and Kempka [17].
For completeness and because the parallelization e�ort is dictated by the numerical formula-
tion, a brief discussion of the numerical formulation is presented below.

3.1. Galerkin approximation of the GHD

For convenience, de�ne a new vector t= u− S× n. Hence, the GHD (Equation (3)) becomes

�(x)t(x) =
∫
�

�(y)× r(x; y)
r2(x; y)

d�(y)+
∫
�

[t(y)× n(y)]× r(x; y)
r2(x; y)

d�(y)

−
∫
�

[t(y) · n(y)]r(x; y)
r2(x; y)

d�(y) (5)

Discretization is achieved by subdividing the domain � into �nite elements and the bound-
ary of the domain � into boundary elements. Within the eth �nite element, the jth component
of � is approximated as

!ej (y)=
4∑
l=1
!eljSl(y) (6)

where !elj represents the value of the jth component of � at the lth node within the eth �nite
element and Sl represents the bilinear Lagrangian shape function associated with the �nite
element. Similarly, within the eth boundary element, the jth component of t is approximated
as

t ej (y)=
2∑
l=1
t eljNl(y) (7)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:979–999

984 M. J. BROWN AND M. S. INGBER

where, in this case, t elj represents the value of the jth component of t at the lth node within the
eth boundary element and Nl represents the linear Lagrangian shape function associated with
the boundary element. Substituting Equations (6) and (7) into Equation (5), the discretized
form of the GHD can be written using indicial notation as

�(x)tj(x) =
NFE∑
e=1

∫
�e

eijk!ljSl(y)dk
drdr

d� +
NBE∑
e=1

∫
�e

eimpemjk t eljNl(y)nkdp
drdr

d�

−
NBE∑
e=1

∫
�e

t eljNl(y)njdi
drdr

d� (8)

where eijk is the unit alternating tensor, NFE represents the number of �nite elements,
NBE represents the number of boundary elements, and di= xi − yi, where x=(x1; x2) and
y=(y1; y2).
Using the properties of the unit alternating tensor, this equation can be re-written as

�(x)tj(x) =
NFE∑
g=1

∫
�g

eijk!
g
ljSldk

drdr
d�

+
NBE∑
e=1

∫
�e

t elkNldkni − t eliNldknk − t elkNldink
drdr

d� (9)

Using the identities [17]
∫
�

d2n1 − d1n2
drdr

d�=0 (10)

and

�(x)=−
∫
�

dknk
drdr

d� (11)

the left-hand side of Equation (9) can be incorporated into the right-hand side as shown below

0=
NFE∑
g=1

∫
�g

eijk!
g
ljSl(y)dk
drdr

d�

+
NBE∑
e=1

∫
�e

t elkNl(y)(dkni − dink)− (t eliNl(y)− ti(x))dknk
drdr

d�

(12)

This formulation has the advantage of not having to evaluate �(x) explicitly, as well as
eliminating the Cauchy principal value integral on the left-hand side of Equation (9).

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:979–999

PARALLEL VORTICITY FORMULATION 985

Now to obtain a Galerkin approximation, Equation (12) is multiplied by the shape functions
Nm(x) and integrated over the boundary �. Assuming that Nm(x) has support within the fth
boundary element and, within that element

tk(x)|�f = tflkNl(x)

the discretized Galerkin approximation for the GHD is given by

0=
NFE∑
g=1

∫
�f

Nm(x)
∫
�g

eijk!
g
ljSl(y)dk
drdr

d�

+
NBE∑
e=1

∫
�f

Nm(x)
∫
�e

t elkNl(y)(dkni − dink)
drdr

d�

−
NBE∑
e=1

∫
�f

Nm(x)
∫
�e

[t eliNl(y)− tfli Nl(x)]dknk
drdr

d� (13)

The discretized Galerkin form of the GHD represents a vector equation for the unknown
out-of-plane components of the vortex sheet strengths, S, which are embedded in the vector
t. It has been shown previously [17] that the normal component of Equation (13) yields a
rank de�cient system of linear equations. Hence, the current formulation requires applying the
tangential component of Equation (13) as given by

0=
NFE∑
g=1

∫
�f

Nm(x)
∫
�g

eijk�i!
g
ljSl(y)dk
drdr

d�

+
NBE∑
e=1

∫
�f

Nm(x)
∫
�e

t elk�iNl(y)(dkni − dink)
drdr

d�

−
NBE∑
e=1

∫
�f

Nm(x)
∫
�e

[t eli�iNl(y)− tfli �iNl(x)]dknk
drdr

d� (14)

where �i represents the components of the unit tangential vector to the boundary.
Recalling that the vector t contains both known values of the boundary velocity u and

unknown values of the vortex sheet strength S, Equation (14) can be re-written in matrix
form as

[A]{�}T = {f} (15)

Upon solution of Equation (15), the unknown values of the vortex sheet strengths are inserted
into Equation (4) to determine Neumann boundary conditions for the vorticity equation.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:979–999

986 M. J. BROWN AND M. S. INGBER

3.2. Galerkin FEM solution of the vorticity equation

The Galerkin FEM used to solve the vorticity equation is outlined in this subsection. Multi-
plying the 2-D vorticity equation (Equation (1)) by the weighting function, w, and integrating
over the domain yields∫

�
w
@!
@t
dA= −

∫
�
uxw

@!
@x
dA−

∫
�
uyw

@!
@y
dA−

∫
�

[
−�w@

2!
@x2

− �w@
2!
@y2

]
dA (16)

where ux and uy are the components of the velocity vector u. Integrating the second-order terms
by parts (applying Green’s theorem), the weak form of the vorticity equation is written as

∫
�
w
@!
@t
dA+

∫
�
�
(
@!
@x
@w
@x
+
@!
@y
@w
@y

)
dA+

∫
�
uxw

@!
@x
+ uyw

@!
@y
dA=

∫
�
w�qn ds (17)

where the �ux qn is related to the vortex sheet strengths through Equation (4), that is

qn=
@!
@n
=

�
��t

(18)

The weak form of the vorticity equation is discretized by subdividing the domain � into
�nite elements and subdividing the boundary � into boundary elements. Using isoparamet-
ric bilinear Lagrangian interpolation for the �nite elements and linear interpolation for the
boundary elements, the weak form of the vorticity equation can be written in discrete form as

nbe∑
i=1
wei

∫
�e
N ei
N ek
�t

d��ek =
nfe∑
e=1
wei

∫
�e
SiSj d�

d!ej
dt

+
nfe∑
e=1

(
wei �

∫
�e

@Si
@x
@Sj
@x
+
@Si
@y

@Sj
@y
d�

)
!ej

+
nfe∑
e=1

(
wei

∫
�e
Si
@Sj
@x
uexkSk + Si

@Sj
@y
ueykSk

)
d�!ej (19)

where nfe is the number of �nite elements, nbe is the number of boundary elements, wei , !
e
i ,

uexi, u
e
yi represent the value of w, !, ux, and uy, respectively, at the ith node within the eth

�nite element, Si represents the bilinear �nite element shape function, �ei represents the value
of � at the ith node within the eth boundary element and Ni represents the linear boundary
element shape function.
For convenience, the element capacitance matrices, element sti�ness matrices and element

load vectors are de�ned by

(Ce)ij =
∫
�e
S ei S

e
j d� (20)

(Kex)ij = �
∫
�e

@S ei
@x

@S ej
@x

d� (21)

(Key)ij = �
∫
�e

@S ei
@y

@S ej
@y

d� (22)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:979–999

PARALLEL VORTICITY FORMULATION 987

(Keu)ij =
4∑
k=1
uexk

∫
�e
S ei
@S ej
@x
S ek d� (23)

(Kev)ij =
4∑
k=1
ueyk

∫
�e
S ei
@S ej
@y
S ek d� (24)

(Fe)i =
1
�t
�ek

∫
�e
N ei N

e
j d� (25)

The discretized weak form can now be written in the following convenient form:

nfe∑
e=1
wei (C

e)ij!̇ej +
nfe∑
e=1
wei {(Kex)ij + (Key)ij + (Keu)ij + (Kev)ij}!ej =

nbe∑
e=1
wei (F

e)i (26)

After assembly and dividing through by the Galerkin vector {wi}, the assembled �nite element
equations become

[Kx + Ky + Ku + Kv]{!}+ [C]{!̇}= {F} (27)

The discretized equation set (Equation (27)) is inherently non-linear since the matrices Ku
and Kv contain the unknown velocity �eld components. The velocity components in these
matrices are evaluated using Equation (3) in step 2 of the algorithm. Time is discretized
using an Euler explicit method resulting in a �rst-order accurate method in time.
In the current implementation of the numerical algorithm, both the discretized FEM and

GHD equations are assembled outside of the time loop as well as the LU decomposition of
the GHD equations. Also performed outside the time loop is the numerical quadrature used
for evaluating the interior velocities. Hence, within the time loop, the majority of calculation
is matrix–vector multiplication and back substitution.

4. BENCHMARK PROBLEMS

Two benchmark problems are considered in this section to show the capabilities of the nu-
merical formulation. The �rst benchmark considers interior �ow for an impulsively started
driven cavity. The second benchmark considers exterior �ow about a cylinder in a uniform
stream.

4.1. Driven cavity �ow—internal �ow

The driven-cavity �ow computations are performed in the unit square in which the top surface
is impulsively given a velocity of 1.0 at time t=0. The initial velocities and vorticities are
zero. The kinematic viscosity is chosen to be �=0:01 resulting in a Reynolds number of 100.
The time step is chosen to be �t=0:001. Grid converged results are obtained with a uniform
41× 41 mesh.
Streamline and vorticity contours are shown in Figure 1 at time t=10 s. The system has

essentially reached steady-state conditions at this time. The streamline and vorticity contours
are qualitatively similar to the vorticity–streamfunction multigrid �nite di�erence results of

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:979–999

988 M. J. BROWN AND M. S. INGBER

X

Y

0 0.5 1
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

(a)

-5-4

-5

-3

-2

-2

-1

-1

-0.75

-0.
75

-0.5 -0
.5

-0.25

-0.25

0

0

3

0.
25

0.2
5

0.
5

0.
5

0.5

0.
75

0.75

1

2

2
4

X

Y

0 0.5 1
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

(b)

Figure 1. Flow in a driven cavity at �=100: (a) steady-state streamline pattern;
(b) steady-state vorticity contour pattern.

Table I. Comparison of primary and secondary vortex data between current vorticity solution
and primitive variable FDM solution of Ghia et al. [12].

Current results Multigrid FDM results

(x; y) co-ordinates of primary vortex (0:6165; 0:737) (0:6172; 0:7344)
Length of bottom left vortex on lower wall 0.0822 0.0781
Height of bottom left vortex along side wall 0.0818 0.0781
Length of bottom right vortex on lower wall 0.1360 0.1328
Height of bottom right vortex along side wall 0.1546 0.1484

Ghia et al. [32]. Ghia’s result were generated using a 129× 129 stretched grid. A comparison
of the centre of the primary vortex and the extent of the secondary vortices is shown in
Table I. As seen in the table, the current results compare very favourably to the FDM results.
A comparison of the results generated using the current vorticity formulation and Ghia

et al. multigrid method for the horizontal velocities along the vertical bisector and vertical
velocities along the horizontal bisector of the cavity is shown in Figure 2. The agreement is
again seen to be very good. The current results were generated by running the calculation
through the transient from initial rest conditions whereas the FDM results were obtain using
a steady-state analysis.

4.2. Flow around a cylinder—external �ow

A free stream of unit velocity is impulsively started at time t=0 for the benchmark problem
of external �ow about the circular cylinder. The diameter of the cylinder is chosen to be 1
so that the Reynolds number is given by the inverse of the �uid viscosity. Initial conditions
for the vorticity are set to zero.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:979–999

PARALLEL VORTICITY FORMULATION 989

0 0.2 0.4 0.6 0.8 1
 −0.4

 −0.2

0

0.2

0.4

0.6

0.8

1

y

u

current results
Ghia results

(a)
0 0.2 0.4 0.6 0.8 1

 −0.3

 −0.2

 −0.1

0

0.1

0.2

x

v

current results
Ghia results

(b)

Figure 2. Steady-state results for (a) the u-component of velocity along the vertical cavity bisector and
(b) the v-component of velocity along the horizontal cavity bisector.

X

Y

0 10 20 30

-5

0

5

10

Figure 3. Finite element grid for �ow about the cylinder benchmark problem.

A typical �nite element grid is shown in Figure 3. The cylinder is approximated by 160
boundary elements. Lines emanate radially from the boundary element nodes until they inter-
sect a square box with sides equal to six diameters. The �nite elements are seen to be graded
so that smaller elements are placed near the surface of the cylinder to be able to provide ad-
equate resolution for the large vorticity gradients in this region. A uniform mesh is attached
downstream of the square box. The total number of �nite elements is 8080 and the number of
�nite element nodes is 8302. Although the serial version of the vorticity code was adequate
to resolve the previous benchmark problem, it was not possible to run the external benchmark
with current grid resolution on a single processor because the memory requirements were too
large.
Vorticity fringe plots are shown in Plate 1 from time t=59:7 to 66:7 at 1 s intervals for

�ow around the cylinder at a Reynolds number of �=100. The vortex shedding pattern is
qualitatively similar to those found in standard references such as Inoue and Yamazaki [33].

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:979–999

990 M. J. BROWN AND M. S. INGBER

80 85 90 95
 −5

 −4

 −3

 −2

 −1

0

1

2

3

Time

V
o

rt
ic

it
y

Re 100
Re 200
Re 300
Re 500

Figure 4. Calculated vorticity at the point x=6:4, y=0:3 in the wake of the cylinder.
(The centre of the cylinder is placed at the origin of the co-ordinate system.)

The shedding frequency as characterized by the Strouhal number is approximately 0.159 which
corresponds to a period of approximately 6:3s. The entire cycle of a positive vortex being shed
from the lower rear portion of the cylinder and a negative vortex being shed from the upper
rear portion of the cylinder is seen in the sequence of vorticity fringe plots. It is interesting
to note the areas of strong vorticity attached to the rear of the cylinder which are actually
opposite in sign to the vorticity being shed from that side of the cylinder.
A more quantitative measure of the accuracy of the current vorticity formulation is to

compare the measured Strouhal number with those available through experiment and other
numerical analyses. The Strouhal number is de�ned by St=!d=V where ! is the vortex
shedding frequency, d is the cylinder diameter and V is the free stream velocity. Although it
is possible to obtain an approximate Strouhal number from the vorticity fringe plots shown
in Plate 1, an easier approach is to choose a position in the wake of the cylinder and plot
the vorticity at that point as a function of time. This plot is shown in Figure 4. Because the
cylinder diameter and free stream velocity are both unity, the Strouhal number is equal to
the frequency, !, which is the inverse of the time period. The periodic motion of the �ow is
easily observable in Figure 4 and the periods for the four Reynolds numbers shown is easy
to measure.
A plot of current numerical results for the Strouhal number as a function of the Reynolds

number is shown in Figure 5. The current values are in good agreement with previous
two-dimensional numerical results [34; 35]. Also shown in the �gure are two curve �ts of ex-
perimental data. Williamson [36] provided a curve �t for Reynolds numbers less than approx-
imately 200 and Roshko [37] provided a curve �t for Reynolds numbers over approximately
250. It is seen in the �gure that the current numerical results match the Williamson curve �t

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:979–999

PARALLEL VORTICITY FORMULATION 991

0 200 400 600 800 1000 1200
0.1

0.12

0.14

0.16

0.18

0.2

0.22

Re

S
tr

o
u

h
al

Williamson universal
current results
Roshko curve fit
Roshko data points

Figure 5. The Strouhal number as a function of the Reynolds number for �ow about the cylinder.

quite well for �¡200 but are above the Roshko curve �t for �¿250. However, as discussed
by Vorobie� and Ecke [38], there is a wake transition that occurs between Reynolds numbers
of 200 and 300 associated with stretching of vortex lines for the three-dimensional experi-
ments. This transition obviously cannot occur in a two-dimensional simulation. Vorobie� and
Ecke were able to perform two-dimensional physical experiments using a soap �lm apparatus
which also showed the two-dimensional wakes have a higher Strouhal number for �¿200
compared to three-dimensional wakes.

5. PARALLELIZATION

The main reason for the parallelization of the vorticity formulation is to increase the capa-
bilities of the code, both by increasing the size of the problem that can be analysed, thus
increasing the �exibility and usefulness of the code, and by decreasing the overall run time.
The current implementation of the vorticity formulation became memory bound before it be-
came CPU bound. For large problems, these memory limitations can be conveniently remedied
by a distributed memory parallel machine.
The parallelization of the current formulation is completed in three steps with each step

corresponding directly to one of the three steps of the algorithmic formulation. That is, the
three steps include (1) parallelization of the Galerkin GHD to determine the vortex sheet
strengths; (2) parallelization of the velocity integrals to determine the interior velocity �elds
and (3) parallelization of the Galerkin FEM to update the vorticity �eld in time.
In the following three subsections, the parallel strategy for each step is presented. In par-

ticular, the data distribution, load balancing, work performed inside and outside the time loop
and message passing required by each step is discussed. The parallel program paradigm used
is the single program, multiple data (SPMD) model with MPI for parallel communication.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:979–999

992 M. J. BROWN AND M. S. INGBER

5.1. Step 1; parallelization of the Galerkin GHD

The choice of parallel solver dictated the data distribution and matrix assembly associated
with the Galerkin GHD. ScaLAPACK is used as the dense parallel matrix solver replacing
the LU decomposition used in the serial code. ScaLAPACK was chosen primarily because of
the fact that it uses a block cyclic data distribution which minimizes communication during
the solution phase of the algorithm [23]. Further, ScaLAPACK was available on all machines
used in the testing and timing.
The processors can be considered to be arranged on a 2-D array, and each processor

calculates only a section of the dense matrix. ScaLAPACK allows the user to specify the size
of the blocks in the block-cyclic data distribution which is most e�cient for the hardware.
Using too small of a block size increases the communication overhead, while too large a
block size can exceed hardware cache limits and be ine�cient. The block size was chosen
to be the number of boundary elements divided by the number of processors in a row of
the 2-D array. This means that no wrapping occurs. For the particular solver chosen within
ScaLAPACK, there is a restriction that requires the 2-D processor array to be square, (e.g.
2× 2 or 4× 4). This requires that the submatrices assigned to each processor also be square.
The matrix is assembled and decomposed in parallel outside of the time loop, so the only
work performed inside the time loop is the updating of the right-hand side vector, and the
back-substitution to determine the updated values of the vortex sheet strengths.
The only communication required during the assembly phase are two row-gathers to incor-

porate the left-hand side of the GHD into the right-hand side and to regularize the Cauchy
principle value integral. However, signi�cant communication is required of the parallel de-
composition routine used in ScaLAPACK. Within the time loop, additional broadcasts are
required to obtain updated values of the vorticity to evaluate the GHD, but overall storage
requirements on a single processor are reduced because of the distribution of data among the
processors. Some of ScaLAPACK’s intrinsic functions are used to facilitate the book-keeping
involved with the 2-D processor array as well as some PBLAS routines (parallel, basic linear
algebra subroutines).

5.2. Step 2; parallelization of the velocity integrals

The limiting factor in the serial code is the size of the arrays generated to evaluate the velocity
integrals. Although these arrays are calculated outside of the time loop, the largest array
contains 8 ∗NP2 elements where NP is the number of nodes contained in the �nite element
grid. This caused the serial code to become memory bound for �ne FEM discretizations. An
alternate approach would be to evaluate the velocity integrals inside the time loop which
would alleviate the storage problem. However, most likely, the resulting code would then
quickly become CPU bound. Obviously, the large arrays resulting from the velocity integral
evaluations could bene�t greatly from parallelization, both from the reduction in size of the
array stored in memory on each processor of a distributed memory architecture and from the
distribution of the work load in creating these arrays.
The parallelization of this step is the most straightforward since each evaluation of the

velocity integral at a given �eld point (�nite element node) is independent of all the other �eld
points. Hence, the �nite element nodes are simply evenly distributed among the processors.
Outside of the time loop, the integral arrays are determined using Gaussian quadrature. Inside
the time loop, the velocities are determined on the local processors by performing a simple

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:979–999

X

Y

0 10 20

-5

0

5

VORTICITY
1.5
1.2
0.9
0.6
0.3
0

-0.3
-0.6
-0.9
-1.2
-1.5

(a)

X

Y

0 10 20

-5

0

5

(b)

X

Y

0 10 20

-5

0

5

(c)

Plate 1. Vorticity contour fringe plot for �ow around the cylinder at a Reynolds number of �=100, (a)
t=59:7, (b) t=60:7, (c) t=61:7, (d) t=62:7, (e) t=63:7, (f) t=64:7, (g) t=65:7 and (h) t=66:7.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002: 39:(11)

X

Y

0 10 20

-5

0

5

(d)

X

Y

0 10 20

-5

0

5

(e)

X

Y

0 10 20

-5

0

5

(f)

Plate 1. Continued

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002: 39:(11)

X

Y

0 10 20

-5

0

5

(g)

X

Y

0 10 20

-5

0

5

(h)

Plate 1. Continued

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002: 39:(11)

PARALLEL VORTICITY FORMULATION 993

matrix–vector multiplication. The communication required in this step consists of a broadcast
of the updated vortex sheet strengths from step 1 and updated vorticities from step 3 and a
gather of the velocities for use in step 3 (the kinetic step).

5.3. Step 3; parallelization of the �nite element section

A row-wrap data distribution is chosen for the parallelization of the kinetic step using the
FEM. The parallel strategy chosen for this phase is the total-summed-row approach. Typically,
this strategy is based on domain partitioning in which nodal data and connectivity for both the
interior elements and border elements required to generate a complete row of the discretized
matrix equation reside on a given processor [29]. However, in the current implementation,
since the nodal data are required for the calculation of the interior velocities in step 1, this
information is broadcast to all processors outside of the time loop after it is read in from the
input �le. Hence, no domain partitioning is necessary and rows in the matrix equation can
simply be assigned evenly to processors.
Part of the equation assembly can be performed outside of the time loop. However, to

assemble the [Ku] and [Kv] (see, Equation (27)) portions of the sti�ness matrix, updated values
of the velocity �led determined in step 2 are required. Inside the time loop, the completion
of the sti�ness matrix is performed by matrix–vector multiplication. The load vector is also
determined inside the time loop again by performing a matrix–vector multiplication. Since the
assembly of each row of the matrix equation is independent, there is no communication in
the assembly phase of the algorithm.
The iterative equation solver PIM [39] was chosen to solve the sparse linear system us-

ing a restarted GMRES method with Jacobi preconditioning. The data are stored in CSR
(compressed sparse row) format and only non-zero matrix values are stored. PIM requires a
user-de�ned parallel matrix–vector multiplication scheme. The majority of the communication
required during the solution phase of this step is a gather of the residual vector.

6. PARALLEL PERFORMANCE

The parallel performance of the vorticity code is evaluated using the driven-cavity problem
in a unit square for various levels of discretization. Outside the time loop, timers were placed
at the beginning and end of the velocity integral evaluation, the assembly of the GHD, the
ScaLAPACK decomposition, and the �nite element assembly portions of the code. A plot of
the CPU time for each of these portions of the code versus the number of processors is shown
in Figure 6 for a variety of di�erent problem sizes. The term ‘nps’ in the legend of the �gures
indicates the number of nodes per unit length. Therefore, the number of �nite element nodes is
nps2 and the number of boundary element nodes for the GHD is 4 ∗ nps. Recall that, because
of the limitation imposed by ScaLAPACK, all processor arrays are square. All timings in this
section were performed on an IBM SP2 at the Maui High Performance Computing Center
with PS2C nodes and 512 MB of RAM.
All timings except for the ScaLAPACK decomposition show almost perfect scalability.

(The scalability of the algorithm as a whole is measured later.) That is, for the integral
evaluation, GHD assembly, and FEM assembly, the CPU time essentially decreases in half
when the number of processors is doubled. The reason for this is that there is little or

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:979–999

994 M. J. BROWN AND M. S. INGBER

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

350

400

number of processors

ti
m

e

 (a)

nps = 31

nps = 41

nps = 51

nps = 61

nps = 81

nps = 121

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

number of processors

ti
m

e

 (b)

nps = 31

nps = 41

nps = 51

nps = 61

nps = 81

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of processors

ti
m

e

 (c)

nps = 31

nps = 41

nps = 51

nps = 61

nps = 81

nps = 121

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of processors

ti
m

e

 (d)

nps = 31

nps = 41

nps = 51

nps = 61

nps = 81

Figure 6. CPU times accrued outside the time loop as a function of the number of processors for
(a) velocity integral evaluations, (b) Galerkin GHD assembly, (c) ScaLAPACK decomposition, and

(d) �nite element assembly.

no communication in these sections of the code as discussed in the previous section. Even
though the ScaLAPACK decomposition time increases with increasing number of processors,
these times are negligible compared to the velocity integral evaluation and Galerkin GHD
assembly times. However, the timings indicate, for the problem sizes considered here, the
communication costs associated with the decomposition dominate over the computational costs.
Even for the largest problem shown (nps=121) which results in 480 boundary elements and
a fully populated 484× 484 matrix, the boundary element matrix is relatively small compared
to the associated banded 14 400× 367 �nite element matrix. Despite the additional cost of
performing the decomposition in parallel outside the time loop, there are still advantages of
this parallelization inside the time loop associated with the forward and backward substitution
(as discussed below) to determine the vortex sheet strengths and there is also a savings in
memory usage per processor.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:979–999

PARALLEL VORTICITY FORMULATION 995

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

number of processors

ti
m

e

 (a)

nps = 31

nps = 41

nps = 51

nps = 61

nps = 81

nps = 121

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

number of processors

ti
m

e

 (b)

nps = 31

nps = 41

nps = 51

nps = 61

nps = 81

nps = 121

0 10 20 30 40 50 60 70
0

5

10

15

20

25

 (c) number of processors

ti
m

e

nps = 31

nps = 41

nps = 51

nps = 61

nps = 81

nps = 121

Figure 7. Clock times accrued per time step as a function of the number of processors for (a) Galerkin
GHD forward and backward substitutions, (b) PIM solution of the discretized FEM equations and

(c) velocity integral evaluations.

Timings performed inside the time loop include determining the vortex sheet strengths
(step 1), determining the interior velocity �eld (step 2) and determining the updated vorticity
�eld (step 3). These timings per time step are shown in Figure 7. The forward and backward
substitutions to determine the vortex sheet strengths of step 1 and the matrix–vector multi-
plication to determine interior velocities of step 2 again show almost perfect scalability. The
time within the loop used by PIM to solve the discretized FEM equations is not as scalable
particularly for smaller problems using large numbers of processors.
Log–log plots of the total clock time outside the time loop and per time step inside the

time loop are shown in Figure 8 for the case nps= 41. Also shown in the �gure is the straight
line curve representing ideal scalability. Ideal scalability is de�ned by the CPU time required
on one processor divided by the number of processors. The clock time outside the loop shows
essentially ideal speedup despite the poor scalability of the ScaLAPACK decomposition. As
discussed above, the reason for this is that the decomposition represents only a fraction of

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:979–999

996 M. J. BROWN AND M. S. INGBER

10
0

10
1

10
2

10
1

10
2

10
3

number of processors

ti
m

e

 (a)

outside loop
perfectly scaled

10
0

10
1

10
2

10
 -1

10
0

10
1

number of processors

ti
m

e

 (b)

time per loop
perfectly scaled

Figure 8. Clock times (a) outside the time loop and (b) inside the time loop per time step for the
driven-cavity problem with NPS=41.

the CPU e�ort outside the loop. Inside the loop, the speedup is also near ideal. In fact, the
superlinear speedup shown inside the time loop increasing from 1 to 4 processors is most
likely due to a reduction of cache misses between the 1 and 4 processor runs.
As discussed previously, the serial version of the vorticity code became memory bound far

before it became CPU bound. To make sure that storage was minimized, all arrays whose size
depended on the �nite and boundary element discretizations such as nodal data, connectivity
data, and arrays to store the results of numerical integrations were made allocatable at run
time. These allocatable arrays comprised a minimum of 98% of the total memory usage as
determined by a run-time system call. To show the advantages of the distributed memory,
the number of allocated array elements per processor was measured for a number of di�erent
discretizations.
The �rst such measurement performed was for the driven-cavity problem with nps= 41.

The total number of array elements when using one processor was 25:5× 106. This number
was reduced to 6:5×106 per processor using four processors and 1:8×106 per processor
using 16 processors. These measurements show that the majority of array elements were
distributed either in steps 1, 2 or 3 of the parallelization e�ort. As an example going from
one processor to four processors, the total reduction in array elements was 19:0×106. Of
that reduction, 0:1×106 could be attributed to step 1 (parallelization of the Galerkin GHD),
18:2×106 could be attributed to step 2 (parallelization of the velocity integrals) and 0:7×106
could be attributed to step 3 (parallelization of the Galerkin FEM). Hence, it is seen that
the majority of the savings in memory per processor came from the parallelization of the
evaluation of the velocity integrals.
To demonstrate the memory usage problem more dramatically, a plot of the total number

of allocatable array elements per processor for various discretizations of the driven-cavity
problem is shown in Figure 9. Also shown in the �gure is a horizontal line indicating the
maximum number of array elements that could be stored (double-precision) in memory on a
512 MB RAM machine, such as the IBM PS2C nodes used in this analysis. Hence, points
above this horizontal line indicate problems with domain discretizations that would be memory

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:979–999

PARALLEL VORTICITY FORMULATION 997

0 10 20 30 40
10

5

10
6

10
7

10
8

10
9

number of processors

n
u

m
b

er
 o

f
ar

ra
y

el
em

en
ts

41x41 nps
61x61 nps
101x101 nps
141x141 nps
 size limit for 512MB

Figure 9. Number of allocatable array elements per processor for the driven-cavity problem.

bound on the current hardware. The �gure clearly shows that larger problems are enabled by
increasing the number of processors.

7. CONCLUSIONS

A vorticity formulation for the analysis of incompressible viscous �uid �ows is presented
based on a three-step algorithm. A Galerkin implementation of the generalized Helmholtz
decomposition (GHD) is used in the �rst kinematic step to provide accurate vorticity �ux
boundary conditions. The regular form of the GHD is used in the second kinematic step to
determine the interior velocity �eld. A �nite element formulation for the vorticity equation is
used in the third kinetic step to determine updated values of the interior vorticity �eld. The
accuracy of this formulation was demonstrated using the interior driven cavity and exterior
�ow about a cylinder problems as benchmarks.
The current formulation is of interest from a parallel implementation point of view since

each of the three steps requires a separate parallel strategy. The parallel implementation for the
Galerkin GHD to determine vorticity �ux boundary conditions is based on a block–block data
distribution in which square portions of the discretized GHD matrix equations are assigned
to processors. The LU decomposition using ScaLAPACK actually displayed a type of inverse
scaling, that is, the LU decomposition actually took more time with increasing number of
processors because of the communication overhead. Nevertheless, the parallelization of this
step is still worthwhile since the backward and forward substitution within the time loop
scales almost perfectly. Since the decomposition is only performed once and the backward and
forward substitutions are performed literally thousands of time, there is an overall substantial
savings in run time by parallelizing the �rst step.
The parallelization of the velocity integrals is an essentially embarrassingly parallel step

since the evaluation at each �nite element node is independent of each other node. Hence,

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:979–999

998 M. J. BROWN AND M. S. INGBER

interior nodes can simply be distributed among the processors. As expected, almost ideal
scaling is measured for this step.
The parallel implementation for the �nite element solution of the vorticity equation is

based on the total-summed-row approach in which rows of the discretized matrix equations
are row-wrapped among processors. The assembly scales very well but the PIM GMRES
routine is only modestly scalable. This result is somewhat puzzling since the matrix–vector
multiplications required by PIM are independent. The only communication that should be
required by the routine is a gather of residual vectors. However, as with many such software
packages, the internal workings of PIM are opaque to the user.
The performance of the parallel vorticity code clearly shows the advantages of using mul-

tiple processors. Overall, the algorithm scales very well. However, the CPU savings tell only
half of the story. Without the parallelization, the code examining �ow over a 2-D cylin-
der would not have been capable of including much of a wake region because the serial
code would become memory bound for reasonable discretizations. The memory savings per
processor in a parallel implementation enable the analysis of larger problem domains while
maintaining an adequate level of discretization.

REFERENCES

1. Roache P. Computational Fluid Dynamics. Hermosa Press: Albuquerque, 1972.
2. Parmentier EM, Torrance KE. Kinematically consistent velocity �elds for hydrodynamic calculations in
curvilinear coordinates. Journal of Computational Physics 1975; 19:404.

3. Quartapelle L. Vorticity conditioning in the computation of two-dimensional viscous �ows. Journal of
Computational Physics 1981; 40:453–477.

4. Quartapelle L, Vlaz-Gris F. Projection conditions on the vorticity in viscous incompressible �ows. International
Journal of Numerical Methods in Fluids 1981; 1:129.

5. Anderson CR. Vorticity boundary conditions and boundary vorticity generation for two-dimensional viscous
incompressible �ow. Journal of Computational Physics 1989; 80:72–97.

6. Koumoutsakos P, Leonard A, Pepin F. Boundary conditions for viscous vortex methods. Journal of
Computational Physics 1994; 113:52–61.

7. Gatski TB, Grosch CE, Rose ME. The numerical solution of the Navier–Stokes equations for 3-dimensional,
unsteady, incompressible �ows by compact schemes. Journal of Computational Physics 1989; 82:298–329.

8. Daube O. Resolution of the 2D Navier–Stokes equations in velocity–vorticity form by means of an in�uence
matrix technique. Journal of Computational Physics 1992; 103:402–414.

9. Chorin AJ, Marsden JE. A Mathematical Introduction to Fluid Mechanics. Springer-Verlag: Berlin, 1990.
10. Wu JC, Thompson JF. Numerical solutions of time-dependent incompressible Navier–Stokes equations using an

integro-di�erential formulation. Computers and Fluids 1973; 1:197–215.
11. Wu JC. Numerical boundary conditions for viscous �ow problems. AIAA Journal 1976; 14:1042–1049.
12. Wu JC, Gulcat U. Separate treatment of attached and detached �ow regions in general viscous �ows. AIAA

Journal 1979; 19:20–27.
13. Wu JC. Boundary elements and viscous �ows. In Boundary Element Technology VII. Babbia CA, Ingber MS

(eds.). Elsevier Applied Science: Amsterdam, 1992.
14. Morino L. Helmholtz decomposition revisited: vorticity generation and trailing edge condition. Computational

Mechanics 1986; 1:65–90.
15. Morino L. Boundary integral equations in aerodynamics. Applied Mechanics Review 1993; 46:445.
16. El-Refaee MM. Vortex lock-on for a rotationally oscillating circular cylinder—a BEM numerical study.

Engineering Analysis with Boundary Elements 1995; 15:235–247.
17. Ingber MS, Kempka SN. A Galerkin implementation of the generalized Helmholtz decomposition for vorticity

formulations. Journal of Computational Physics 2001; 169: 215–237.
18. Kamiya N, Iwase H, Kita E. Parallel implementation of boundary element method with domain decomposition.

Engineering Analysis with Boundary Elements 1996; 18(3):209–216.
19. Davies AJ. Fine-grained parallel boundary elements. Engineering Analysis with Boundary Elements 1997;

19(1):13–16.
20. Gomez JE, Power H. A multipole direct and indirect BEM for 2D cavity �ow at low Reynolds number.

Engineering Analysis with Boundary Elements 1997; 19(1):17–32.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:979–999

PARALLEL VORTICITY FORMULATION 999

21. Semeraro BD, Gray LJ. PVM implementation of the symmetric-Galerkin method. Engineering Analysis with
Boundary Elements 1997; 19(1):67–72.

22. Davies AJ. The boundary element method on a transputer network. In Boundary Elements XIII. Brebbia CA,
Gipson GS (eds.). Computational Mechanics Publications: Southampton, 1991.

23. Hendrickson BA, Womble DE. The torus-wrap mapping for dense matrix calculations on massively parallel
computers. SIAM Journal of Scienti�c Computing 1994; 15(5):1201–1226.

24. Ingber MS, Womble DE, Mondy LA. A parallel boundary element formulation for determining e�ective
properties of heterogeneous media. International Journal for Numerical Methods in Engineering 1994; 37:
3905–3919.

25. Natarajan R, Krishnaswamy D. A case study in parallel scienti�c computing: the boundary element method on
a distributed-memory multicomputer. Engineering Analysis with Boundary Elements 1996; 18:183–193.

26. Baltz BA, Ingber MS. A parallel implementation of the boundary element method for heat conduction analysis
in heterogeneous media. Engineering Analysis with Boundary Elements 1997; 19:3–11.

27. Hutchinson SA, Ng KT. A �nite element algorithm for elliptical equations over unstructured domains on a data
parallel computer. International Journal for Numerical Methods in Engineering 1994; 37:3153–3167.

28. Barragy E, Carey GF. A parallel element-by-element solution scheme. International Journal for Numerical
Methods in Engineering 1988; 26:2367–2382.

29. Shadid JN, Hutchinson SA, Mo�at HK, Hennigan GL, Hendrickson B, Leland RW. A 65+ G�op=s unstructured
�nite element simulation of chemically reacting �ows on the intel Paragon. Proceedings of Supercomputing 94.
IEEE Computer Society Press: Silver Spring, MD, 1994.

30. Kempka SN, Glass MW, Perry JS, Strickland JH, Ingber MS. Accuracy considerations for implementing velocity
boundary conditions in vorticity formulations. Technical Report SAND96-0583, Sandia National Laboratories,
1996.

31. Wu JZ, Wu XH, Ma HY, Wu JM. Dynamic vorticity condition: theoretical analysis and numerical
implementation. International Journal for Numerical Methods in Fluids 1994; 19:905–938.

32. Ghia U, Ghia KN, Chin CT. High-resolutions for incompressible �ow using the Navier–Stokes equations and a
multigrid method. Journal of Computational Physics 1982; 48:387–411.

33. Inoue O, Yamazaki T. Secondary vortex Streets in two-dimensional cylinder wakes. Fluid Dynamics Research
1999; 25:1–18.

34. Allievi A, Bermejo R. Finite element modi�ed method of characteristics for the Navier–Stokes equations.
International Journal for Numerical Methods in Fluids 2000; 32:439–464.

35. Chan CT, Anastasiou K. Solution of incompressible �ows with or without a free surface using the �nite volume
method on unstructured triangular meshes. International Journal for Numerical Methods in Fluids 1999; 29:
35–57.

36. Williamson CHK. De�ning a universal and continuous Strouhal–Reynolds number relationship for the laminar
vortex shedding of a circular cylinder. Physics of Fluids 1988; 31:2742–2744.

37. Roshko A. On the development of turbulent wakes from vortex streets. NACA Report 1191, 1954.
38. Vorobie� P, Ecke RE. Cylinder wakes in �owing soap �lms. Physical Review E 1999; 60(3):2953–2956.
39. PIM. http://www.mat.ufrgs.br=pim-e.html.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:979–999

